On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming
نویسندگان
چکیده
The augmented Lagrangian method (ALM) is a benchmark for solving a convex minimization model with linear constraints. We consider the special case where the objective is the sum of m functions without coupled variables. For solving this separable convex minimization model, it is usually required to decompose the ALM subproblem at each iteration into m smaller subproblems, each of which only involves one function in the original objective. Easier subproblems capable of taking full advantage of the functions’ properties individually could thus be generated. In this paper, we focus on the case where full Jacobian decomposition is applied to ALM subproblems, i.e., all the decomposed ALM subproblems are eligible for parallel computation at each iteration. For the first time, we show by an example that the ALM with full Jacobian decomposition could be divergent. To guarantee the convergence, we suggest combining an under-relaxation step and the output of the ALM with full Jacobian decomposition. A novel analysis is presented to illustrate how to choose refined step sizes for this under-relaxation step. Accordingly, a new splitting version of the ALM with full Jacobian decomposition is proposed. We derive the worst-case O(1/k) convergence rate measured by the iteration complexity (where k represents the iteration counter) in both the ergodic and a nonergodic senses for the new algorithm. Finally, an assignment problem is tested to illustrate the efficiency of the new algorithm.
منابع مشابه
On the Proximal Jacobian Decomposition of ALM for Multiple-Block Separable Convex Minimization Problems and Its Relationship to ADMM
The augmented Lagrangian method (ALM) is a benchmark for solving convex minimization problems with linear constraints. When the objective function of the model under consideration is representable as the sum of some functions without coupled variables, a Jacobian or Gauss-Seidel decomposition is often implemented to decompose the ALM subproblems so that the functions’ properties could be used m...
متن کاملPositive-Indefinite Proximal Augmented Lagrangian Method and its Application to Full Jacobian Splitting for Multi-block Separable Convex Minimization Problems
The augmented Lagrangian method (ALM) is fundamental for solving convex programming problems with linear constraints. The proximal version of ALM, which regularizes ALM’s subproblem over the primal variable at each iteration by an additional positive-definite quadratic proximal term, has been well studied in the literature. In this paper, we show that it is not necessary to employ a positive-de...
متن کاملA partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA
We consider a multiple-block separable convex programming problem, where the objective function is the sum of m individual convex functions without overlapping variables, and the constraints are linear, aside from side constraints. Based on the combination of the classical Gauss–Seidel and the Jacobian decompositions of the augmented Lagrangian function, we propose a partially parallel splittin...
متن کاملAugmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملShort-term Generation Scheduling with Transmission and Environmental Constraints Using an Augmented Lagrangian Relaxation
This paper proposes a new approach based on augmented Lagrangian relaxation for short term generation scheduling problem with transmission and environmental constraints. In this method, the system constraints, e.g. load demand, spinning reserve, transmission capacity and environmental constraints, are relaxed by using Lagrangian multipliers, and quadratic penalty terms associated with system lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 25 شماره
صفحات -
تاریخ انتشار 2015